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A FINITE ELEMENT APPROXIMATION FOR A CLASS OF 
DEGENERATE ELLIPTIC EQUATIONS 

BRUNO FRANCHI AND MARIA CARLA TESI 

ABSTRACT. In this paper we exhibit a finite element method fitting a suitable 
geometry naturally associated with a class of degenerate elliptic equations 
(usually called Grushin type equations) in a plane region, and we discuss the 
related error estimates. 

1. INTRODUCTION 

Let Q denote the bounded subset of R2 = R.,x Ry defined by Q ]-1, 1 [ x ]-1,1[, 
and let IF be its boundary. We consider the second order differential operator in 
divergence form in Q defined by 

2 

(1.1) c - E Oi(aij (z)j), 
i,j=l 

where the coefficients aij = aji are measurable real-valued functions and, for some 
I E (0, 1), 

2 

(1.2) V(t2 + A2 (X)772) < E ajj(z)(j(j < 2 + A2(X)712) 
i,j=l 

for any ( ((1I,2)= ((,77) and z = (x,y) C 1R2. Here A is a bounded nonnegative 
Lipschitz continuous function in RE. For simplicity, the reader can think of a model 
operator of the form 

LCo 02 - 2(X)02 

Operators of this form are known as Grushin type operators, and regularity proper- 
ties of the weak solutions of Iu = f have been widely studied in the last few years: 
see, for instance, [FL], [X], [FS], [F], [FGuW1], [FGuW2]. Grushin operators can 
be viewed as (generalized) Tricomi operators for transonic fluids restricted to the 
subsonic region. In addition, note that every second order differential operator 
in divergence form on the plane with nonnegative principal part and which is not 
totally degenerate at any point (i.e. its quadratic form does not vanish identically 
at any point) can be written, after a suitable change of variables, as an operator 
whose principal part is a Grushin type operator (see [X] for an explicit calculation). 
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A fruitful approach to the study of these operators was shown (see [FL]) to 
consist in associating with the operator L: a suitable (non-Riemannian) metric d 
which is basically given by the minimum time required to pass from a given point 
to another along continuous curves which are piecewise integral curves of the vector 
fields ?01 and ?A02 (see Definition 2.1 for a precise definition). If for instance we 
are interested in the H6lder continuity of the weak solutions (De Giorgi-Nash-Moser 
theorem) or in Harnack's inequality for positive weak solutions, then we can repeat 
the classical arguments developed for elliptic equations ([DG], [Mo]) by replacing 
the usual Euclidean balls by the so-called metric balls, i.e. by the balls of the metric 
d. 

The aim of the present paper is to show that a similar geometric approach 
can lead to a natural finite element method for this class of operators. In fact, 
we shall exhibit a triangulation of a plane region by means of a family of non- 
isotropic triangles fitting the geometry associated with the metric d, in the sense 
that each triangle of our triangulation contains and is contained in two metric balls 
of comparable radii. The shape of these triangles will not be trivial to describe, 
since metric balls are not invariant under Euclidean translations, so that we cannot 
just repeat a fixed ball by translation. Analogously, there are no simple dilations 
enabling us to rescale our geometry or our estimates. 

In a similar spirit, a finite difference method for ultraparabolic equations of 
Kolmogorov type has recently been developed in [MP]. 

We point out that our approach is not precisely an adaptive method, since, 
roughly speaking, the geometry is fixed a priori and it is given by our model operator 
092 f A2 (X)022, which plays the role of a Laplace-Beltrami operator for our geometry. 
An adaptive method might be superposed on this choice of the geometry, keeping 
in mind the oscillation of the coefficients (note that, in this spirit, the function A is 
not a coefficient, but a structure term). 

We note explicitly that, because of the lack of ellipticity when A vanishes, we are 
forced to seek weak solutions belonging to function spaces which are larger than 

the usual Sobolev space H'(Q) and that are given by the completion of CO (Q) 
with respect to the norm 

11U11L2(52) + 110U1u||L2(52) + J|Ao92u11L2(52), 

so that in general our weak solutions do not belong to H'(Q). 
In fact, this approach has been used for a much larger class of degenerate elliptic 

operators, whose prototype is given by Hormander's well known sum-of-squares 
operators in R' of the form E X?, where Xi,. . . , X, are smooth vector fields 
such that the rank of the Lie algebra generated by them equals n at any point. 
For instance, if we choose A(x) = lxlk, for some positive integer k, then our model 
operator 092 + Jx12k022 is a H6rmander operator. Since we are dealing with non- 
smooth functions A, we shall have to impose further conditions on A to replace this 
rank hypothesis (see Hypothesis (H) below). 

If we try to follow the scheme of Moser's proof of the pointwise regularity of the 
weak solutions of Lu = f, two points appear from the beginning to play a crucial 
role: the fact that the metric d is doubling (i.e. the volume of a metric ball of 
radius 2r is controlled by a constant times the volume of a ball of radius r having 
the same center), and a suitable Sobolev-Poincare inequality on metric balls, where, 
on the right hand side, we have to replace the usual gradient Vu by the 'degenerate 
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gradient' Vxu = (0&, A&2) associated with the operator. These inequalities contain 
deep information concerning the geometry associated with the metric d, since they 
show that the geometric dimension of the metric space defined by d is much larger 
than 2 (or than n in general) and, roughly speaking, it is as large as A is degenerate. 
This phenomenon has been studied in the general context of H16rmander's vector 
fields, and it appears clearly in a family of isoperimetric inequalities associated with 
a family of such vector fields (see [FGaW], [FLW], [CDG1] [CDG2], [GN], [Gr]). 

Unfortunately, this dimensional phenomenon affects our error estimates nega- 
tively. Indeed, first of all, we do not have any Sobolev imbedding theorem to 
control the pointwise values of a weak solution in the interpolation operator by 
means of some higher Sobolev norm, as in the elliptic case. Roughly speaking, this 
estimate is possible for a function u E HS(RT) if n < 2s, and, as we pointed out 
before, the dimension of (Q, d) is in general much higher than 2. Nevertheless, it 
is possible to bypass this difficulty, but the same dimensional phenomenon appears 
again in the numerical approximation, since, corresponding to a mesh of N points, 
we find in the error estimate a factor N-1/(2y+2), where y ? 0 and y + 2 is basi- 
cally the geometric dimension of (Q, d) (all these quantities will be defined formally 
later). In other words, a large number of triangles is required to obtain small errors, 
much larger than in the elliptic case, and larger and larger as A becomes 'flat' at 
the points where it vanishes, so that our approximation converges, but the rate of 
convergence is affected by the order of degeneration of the function A. Then, it 
is necessary to take this phenomenon into account when we compare our numeri- 
cal results with those we can obtain just by running numerical elliptic procedures 
outside of any theoretical scheme. Indeed, this native approach gives locally good 
results away from the zeros of A (since the operator L is locally elliptic in these 
regions). Note that, as we shall discuss later by means of numerical examples, our 
error estimates are sharp. 

In Section 2 we characterize the geometry associated to a given class of operators, 
in Section 3 we set up the general framework for a finite element method fitting the 
given geometry, in Section 4 we prove error estimates and in Section 5 we discuss 
the algorithmic implementation of the method, and we show, by means of a suitable 
choice of the right hand side of the equation, that - as we can expect - the error 
estimate in the energy norm can be better than the error we obtain by using a 
standard mesh, or even an adaptive one (but we stress again that the use of a 
standard mesh has no justification, since there are solutions which do not belong 
to the usual Sobolev space H1(Q)). In addition, we exhibit numerical examples 
showing that our error estimate is optimal. This will be done by analyzing the 
error (in the energy norm associated with the operator) when the data have been 
chosen in such a way that the solution does not belong to the usual Sobolev space. 

2. PRELIMINARIES 

Through this paper we will denote a generic point in 1R2 by z = (x, y). In the 
sequel, we will assume that the function A satisfies the following assumption: 

Hypothesis (H). There exists a positive constant cl such that, for any compact 
interval I C IR, 

0<c1maxA A I-jjA(x)dx<maxA, 

where III denotes the Lebesgue measure of I. 
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This condition is called the RH,, condition in [F] and [FGuW1], and it implies 
basically that A is not flat where it vanishes. For instance, if p is any polynomial in 
x1, then A(xi) = p(x1)lJ (a > 1) belongs to RH,,. Indeed, by rescaling, we can 
reduce ourselves to proving that max(o, 1 Iq I f' q(x) ldx when q is a polynomial 

of degree < m, m fixed. But both max[o,l) lql and (ff lq(x)ladx)l/' are norms on 
the finite-dimensional linear space of all polynomials of degree < m, and so they 
are equivalent. For some comments concerning the intrinsic geometric meaning of 
RH,,, see also [CF]. 

Let us recall now the definition of the metric associated with a family of vector 
fields {Al1a,..., A9nan} (see [FP], [FL], [NSW]) and the main results we will need 
through this paper. 

The distance we shall define is sometimes called Carnot-Caratheodory distance, 
or control distance: indeed, it arises naturally in many optimal control probles (see, 
e.g., recent accounts in [J]). 

Definition 2.1. We say that an absolutely continuous curve y [0,T] -> R 2 is a 
sub-unit curve if for any E = ( R)7) e 

(Ay(t),()2 < 1,12 + A 2 (y(t)) 171 2 

for a.e., t E [0, T] (note that to simplify our notation we have considered A here as 
a function of z E R2). If z1, z2 E 1R2, we put 

d(zi,z2) = inf {T > 0; there exists a sub-unit curve -y: [O,T] - DR2 

such that -y(O) = zi,'y(T) = Z2}. 

By the assumption (H), d(z,,z2) < oo for any z1, z2 E jR2, and hence it is a 
metric. To prove this, we will need only to prove that we can connect each pair of 
points zi = (xi, Yi) and z2 = (X2, Y2) by means of a sub-unit curve. Arguing as 
in [FL] and [F], it is easy to see that we can reduce ourselves to the case x1 = x2 
and A(xi) = 0. But in that case we note that, by hypothesis (H), the function 
s -> A(x1 + s) cannot vanish identically on (0, t) for any t > 0. Thus, it is enough 
to move away from zi along the segment s -> (x1 + s, Yi) (which is a sub-unit 
curve), until we reach a point (x, yi) such that A(xt) > 0, and then we can 'climb 
along a vertical' segment up to the point (x, Y2) because s > (x, Y, + s) is also a 
sub-unit curve. Finally, by repeating backward the previous 'horizogtal' segment 
at the level y = Y2, we can achieve the proof. 

Let us now introduce a function which will play a key role in the description of 
the metric balls relatives to d. 

If z = (x, y) E R2 and r > 0, put 

rx+,r 

(2.1) F(z,r) = F(x,r) = J A(s)ds. 

We shall see later (Theorem 2.3) that r and F(x, r) are respectively the sizes of a 
metric ball in the directions of the coordinate axis. 

In what follows we will say that a constant c > 0 is a geometric constant if it 
depends on the constant c1 of Hypothesis (H) and on sup A. To avoid cumbersome 
notation, at many points we will denote by the same letter c different geometric 
constants. 
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We have: 

Proposition 2.2 ([FGuW1, Proposition 2.5]). Suppose hypothesis (H) holds. 
Then for any point zo = (xo, yo) E R2 there exist a neighborhood U of zo and 
a geometric constant y> 0 such that 

(i) F(z,Ot) > cO1l+F(z,t), 0 < 0 < 1; 
(ii) F-l(z,Ot) < c01/(1+^)F(z,t), 0 < 0 < 1; 

(iii) F(z, Ot) < cOF(z, t), 0 < 0 < 1; 
(iv) if d(z,,Z2) < ct, then F(zi,t) -F(Z2,t) 

for 0 < t < to and z E U, where c is a geometric constant. 
In particular, the following crucial inequality follows from (i): 

t 
(2.2) A(x + st) ds > ct1l+ 

~~~~~~~~~~~ 
for any z = (x, y) E U, S E So = EE R: |E-&,oj < 61 C [-I, 1] \{0} and t -E (0, to). 

We observe that, because of Proposition 2.2 (ii), the following doubling property 
holds: 

(2.3) F(z, r) < F(z, 2r) < cF(z, r) 

for any z E U, and r < ro, ro and c being geometric constants. 
We can now combine Proposition 2.2 above with the characterization of the d- 

balls given in [F], Theorem 2.3. The following theorem contains the description of 
the geometry given by d. 

Theorem 2.3. Let the assumption (H) be satisfied. Then: 
(i) d(zi,z2) < oo for any Zl,Z2 E R2 , and hence d is a metric. 

(ii) If we denote by B(z, r) the d-ball centered at z and of radius r (i.e. B(z, r) = 

{Z/ E 2 ; d(z, z') < r}), then there exist two geometric constants ti > 0 and 
b > 1 such that, for any zo Ez R2 and t E (0, t1), we have 

(2.4) Q(zo, t/b) C B(zo) t) C Q(zo, bt), 

where, for any r > 0, 

Q(zo,r) = {z = (x, y) E R2: x - xo I < r and y - yo I < F(zo, r)}. 

(iii) There exist two geometric constants A > 0 and rO > 0 such that 

(2.5) JB(z, 2r) I < A JB(z, r) I 

for any z E U and r E (0, ro), i.e. the metric space (R12, d) is a space of 
homogeneous type with respect to Lebesgue measure. 

(iv) If 0 > 0, thenr 

(2.6) cl (0) |B(z,r)| < |B(z, Or) ?< C2 (0) |B(z, r) I 

for any z E U and r < rO and for some suzitable constants cl (0) and C2 (0) 
which are geometric constants, except for the dependence on 0. 

Throughout this paper, we will denote by VA = (01, A02) the degenerate gradient 
associated with the operator ?, and we will put 

(2.7) 1VA =02 IU+ 2 (X) 102U12. 

Moreover, we will denote by Hj (Q) the degenerate Sobolev space associated with 
VA, i.e. the set of u E L2(Q) such that 

aiu E L2(Q), A&2U E 2(Q) 
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endowed with the natural norm 

(2.8) IIuHi2(Q) IIUIIL2(Q) + II01UIIL2(Q) ? IIA&2u112 
We note that a Meyers-Serrin type theorem holds for these spaces, i.e. 

C? o(Q) n Hj (Q) is dense in Hj (Q) 
0 

(see [Fr], [FSSC] and [GN]). Therefore, it will be natural to denote by H' (Q) the 
closure of Co?(Q) in H;\(Q). 

Hypothesis (H) implies suitable forms of classical Sobolev-Poincare inequalities, 
where, as we pointed out in the Introduction, the constant -y in Proposition 2.2 
plays the role of a dimension: see for instance [F] and [FGuW1]. However, what we 
need here is only a simple form of this inequality, which states that the L2-norm 
of a compactly supported function in Q can be controlled by the L2-norm in Q of 
its degenerate gradients, which is therefore equivalent to the norm in H; (Q) (see, 
e.g., [F], Theorem 4.7). 

Theorem 2.4. Suppose Hypothesis (H) holds; then there exists a geometric con- 
stant c > 0 such that 

j lu2d<z ? j c VAUI2dZ 

for all u E H' (Q). 
0 

Note that Theorem 2.4 implies that, if u E H' (Q), then 

(2.9) IIUIIL2(Q) < CHjVA\UWjL2(Q), 

so that the quadratic form 

A(u,u) = j \VU2dz 

associated with the operator L is coercive on H' (Q). 
We can now state the main result concerning the Dirichlet problem for L in Q. 

Theorem 2.5. Let fo, f = (fl, f2) be such that fo, If E L2(Q). Then there exists 
0 

a unique u E H' (Q) solution of the Dirichlet problem 

(2.10) (F) fL:u -divAf + fo in Q, 
U = 0. on ', 

where divAf = 01if + A02f2, in the sense that 

A (u, =o) j{&iu&iP + A 2&2u2}dz - j {f&01i + f2&02 + fop}dz = Lf (o) 

for any 9o E Co??(Q). 

The proof follows straightforwardly by standard arguments from the Lax- 
Milgram theorem because of our Poincare inequality (Theorem 2.4). 

Arguing as in [F] and in [FS], Theorems 5.11 and 6.4 respectively, we can prove 
the following result. 

Theorem 2.6. If fo, If I E LP for p > po = po(A), then the solution u of (P) is 
H6lder continuous in Q. 
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3. FINITE ELEMENT METHOD 

Let us start by constructing a triangulation of Q which fits the geometry associ- 
ated with the operator. Note that the parameter n which will be considered from 
now on has nothing to do with the dimensionality of the space, which is fixed and 
equal to 2. 

Theorem 3.1. For any n > 0 there exists a finite decomposition Tn of the domain 

Q= U K, 
KETn 

where 

(i) each K is a compact triangle with nonempty interior Int(K); 
(ii) Int(KI) 0 Int(K2) 0 for distinct K1, K2 E En; 

(iii) if F = K1 n K2 - C 0, where K1 and K2 are distinct elements of Tn, then 
F must be a side for both K1 and K2 or a vertex for both K1 and K2 (this 
means that no vertex of one triangle lies on the edge of another triangle); 

(iv) for any K E Tzn there exist -K, ZK E R2 and -K, rK > 0 such that 
B(ZK, rK) C K CBZK,r E rK< > < suc that 

rK 

c and C being geometric constants; 
(V) SUpK rK < const n-l/(l+Y), where -y is the constant appearing in Proposition 

2.2. 

Proof. Let us start by constructing the vertices of our triangulation in the set Q+ 
where x > 0, y > 0. By reflection across the axes we will obtain all the vertices of 
the triangulation. 

First, let us choose a > 0 such that a fo A(s)ds = 1. Without loss of generality, 
we can assume that the constant cl in Hypothesis (H) is such that ac1 < 1, and let 
60, 61, ,an be chosen so that 

6j+1 1 
(3.1) 60 = 0, a A(s)ds= - for = O,1, .. ., n-1. 

This choice is always possible by putting A(t) = fg A(s)ds (which is strictly 
increasing by Hypothesis (H)) and 

(3.2) 6j = 1 (- ), j = 1,... ,n. 

Then we can consider the triangulation of &+ given by the family of nodes 
k 

(3j,-), j=O,...,n; k==O,...,n. 

Note that the nodes 
k 

(6ni -), k= O,... ,n, 

and 

(6i 1 ), j = O,. ...,n 

belong to F. FRom. the above construction.it is clear that N v- n2, where N is the 
number of nodes in the triangulation. 
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It is easy to see that the triangulation associated with this family of nodes 
satisfies (i)-(iii). 

Let us prove (iv). To this end, let K be a triangle of TIn. Its vertices will be of 
the following forms: either 

k k k?1I 
(6in)7 (6i+11n) (6j+1, I_ ), j =O,1...,n-1, 1c=O, ...,n-1, 

or 

k k k? 1 
Oil _), (6i+1 _), (6,,-), j =O,. ..,n-1, kc= O,. ..,n-1. 

For simplicity, let us consider only the case with K given by the vertices 

(3.3) P1 = (3j,k)i P2 = (6j+1l k)' P3 = (63, 
k 

) 

Set ZK = (6j,-) 
andk 

K= 
max{l-,1 

( 
-j+ -3j), 

where cl is the constant of 
n2 Cl 

Hypothesis (H). We have 

raj +r;K 

F(=K,fK) A (s) d-s?C> max A 
F ZK CIrKy[a i+K 

>?a(6j+li- j) max A 
j 6j,6j+l] 

fc5+1 1I k?1 k 
> a A(s)ds=- 

n n n 

so that: 

(3.4) K C Q(=K,rK) C B(=K,bfK), 

and hence the second inclusion in (iv) is proved with rK = bfK. To prove the first 
inclusion, set 

ZK = (6j + 0(j?+1 - 3) n ), rK = (6j+l j -6j) 

where 0, E E (0, 1) are fixed constants such that 0 + E < 1/(1 + c eQ), E < claO0. 
Let us prove that Q(ZK, rK) C K, so that, by Theorem 2.3, we can choose 

rK = rK/b. To this end, it will be enough to show that: 

(a) the vertex (6j + 0(6j+l - 6j) + E(6j+l - 3), k+j+ F(Z-K, iK)) lies below the 
line Z2 = n613) {-zl + k(63+1 - j) + 6j+l} = (z1) (which connects P2 
and P3), 

(b) the vertex (6j + 0(6j+l - 6j) - &(6j+l - 3j), kO-F(Z-K, rK)) lies above the 
line Z2 = k (which connects P1 and P2), and 

(c) the vertex (6j + 0(6j+l -j) -E(6j+l -? j), k F(Z-K, rK)) lies on the right 
of the line z1 = 3j (which connects P1 and P3). 
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Indeed: 
(a) 

k + 0 k + 0 6i +0(j+l ( j )+s)(?j+( 6) 
+ F(zKi~K)? / A (s) ds n n d+0(6j+1 6j) 

<-+ - max A 
- n [6j+0(6j+1 -6j),6j+(O+E)(6j+1-6j)I 

<-+ ?( j?i-3j) max A 
n t6j,6j+1] 

(since 3j+1 -j > 0 and 0 +e < 1) 

k + 0 E 6j+1 
< 2 C1 J A (s) ds n cl d 

(by Hypothesis (H)) 

k?O e 1 
= ? <-(1-0-E+k) n alcn n 

(since 2 < 1 +? ) 
c1a 

= p(6i + 0(6j+3 - 63) + e(6J+i - A 

(b) 

k+0 _ k+0 E 
-F(ZK,7 K) > n n alcin 

(arguing as above) 

k + I( e ) k 
n n lac, n 

(c) 3j + 0(6j+l - 3j) - e(?j+l - 3j) > 3j, since e < c1aO < 0. 
To achieve the proof of (iv), we note that both rK and rK are given by a geometric 

constant times 6j+l - 3j, so that assertion (iv) is completely proved. 
On the other hand, by (3.1) and (2.2), 

1 6j+1 O6j+1 -6j )1f0 
1 j / >A(s)ds = 10 A/(6j + sco)ds > c(to)(6j+j -j) +7, 

and then (v) is proved. D 

We can proceed now in a standard way by defining a finite dimensional space Vn 
in the following way: Let P1, ... , PN, N = N(n) be the nodes of En which belong 
to Int(Q). We consider the set Jn of all continuous piecewise linear functions 

- jj=1,...,N, such that 

(3.5) oj _0on 1 and oj(Pi) =ij, i =1,...,N, 

and we denote by Vn the linear space generated by (n. 

Lemma 3.2. Vn c Hk (Q) for n 1 

P H 
Proof. It is enough to note that Vn c H' (Q) c H (Q). 
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A function vn E V, now has the representation 
N 

(3.6) Vn(Z) = Zvn(Pi) Oi(Z), 
i=l 

and our Dirichlet problem can be approximated by the following one. 
Find Un E Vn such that 

(3 7) (Pn) A(Uln,Vn) = Lf (Vn) \VVn E Vn- 

As in the elliptic theory, the above problem can be solved by solving an N x N 
linear system of equations whose stiffness matrix has elements given by 

(a(9i oj, ()) i,j=l,. .... IN' 

We will see in Section 5 a discussion of a numerical solution of this problem. 
Again as in the classical theory, we can define an interpolation operator 

Hn C (Q) -> Vn as follows: 

N 

(3.8) Hn (v) v(Pi)Cpi. 
i=l 

4. ERROR ESTIMATE 

Suppose now that f = (fi, f2) belongs to LP(Q) with p > po as in Theorem 2.6, 
so that the solution u of the Dirichlet problem (2.10) is continuous on Q. 

We will follow the classical Galerkin approximation scheme (see [QV], 6.2.1). 
This technique provides us with an error estimate giving the rate of convergence 
of the approximate solutions u, to u in the norm of the space of weak solutions 

HA (Q). It must be noticed that this error estimate is optimal, as will be clear from 
the numerical results reported in Section 5. As in the usual elliptic case, the error 
estimates rely on L2 estimates of the second derivatives of u; however, because of 
the lack of ellipticity when x 0, we cannot expect usual H2 estimates to hold, 
but, in the spirit of our approach, if we denote by X1, X2 the vector fields 01 and 
A(x)02 respectively, our second order degenerate Sobolev space H,2(Q) will consist 
of these u E HA(Q) such that each monomial XiX u belongs to L2(Q) for i, j = 1, 2, 
endowed with its natural norm. 

'Unfortunately, the corresponding estimates up to the boundary seem rather hard 
to obtain. Nevertheless, if we restrict ourselves to a diagonal operator df the form 

'Co =-012 - 
2(X)022, 

where A is a C0o1 function satisfying Hypothesis (H), these boundary estimates can 
be deduced from analogous interior estimates. 

For instance, if A2 - ,2, where [ is a smooth function such that ,>m)(0) 7 0 
for some m > 0, then these a priori interior estimates for second order 'derivatives' 
hold as a particular case of a deep result of Rotschild and Stein ([RS]). Note that 
if A has such a form, then Hypothesis (H) is automatically satisfied (see below). 
For instance, the prototype Grushin operator corresponding to A(x) = lxlK satisfies 
this assumption when -y E N (note that the choice of the symbol -y for the exponent 
is not casual here, since it is consistent with (2.2)). 

Let us start with the following general result that does not rely on any particular 
structure of L. 
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Theorem 4.1. Suppose A is a C0'1 function satisfying Hypothesis (H) such that 
A2 E C1,7, its zeros are isolated and belong to Int(Q), and that (A2) > 0 in 
a neighborhood of these zeros. If f e L' (Q), then there exists a unique u E 

H (Q) n Co'7 (Q) for some a E (0,1) such that 

1u= f inQ. 

If in addition XiXj u E L2 (Q) for i) j = 1, 2 (where X1- , X2 = A(x)2), then 
0 

the Galerkin approximations un E VT defined by (3.7) converge to u E H1 (Q) as 
n -? oo and the following error estimate holds: 

IU - UnlIIH>(Q) ? Bnl/(l+1)7 

where B depends on If 11L2 (0) and on I1XiXjuIIL2I (0), i,j 172, 

Remark. Suppose in addition we know that for any f L2 (Q) we have u E H2 (Q) n 
H1 (Q). This implies that the map u -+ ICu is a bijection from HK (Q) n Hi (Q) onto 
L2(Q), and hence, by the closed graph theorem, the following a priori estimate 
holds: 

2 

Z XiXjuI|L2(g) ? CI1f JI[ X(g). 

If such an estimate holds, then the error estimate can be written in the form 

Ilu - unlIl H(0) ? Bn-1l/(l+Y) llf l L2(Q), 

where B is a geometric constant. 

Proof of Theorem 4. 1. First of all we notice that f E npf1 LP(Q), and hence u E 

HI (Q) n CO0" (Q) for some a e (0,1) by Theorem 2.6. 
Without loss of generality, we may assume that A(0) = 0 and A(x) > 0 if x 7 0. 

Moreover, we can assume that A(x') ? A(x") for 0 < x" < x' and A(x') ? A(x") for 
x" < x' < 0. As in [QV], Theorem 5.2.1, there exist B1, B2 > 0, depending only 
on v and the constant c of (2.9), such that 

(4.1) IlutnhIHl) ? B1llfIIL2(), 

(4.2) IIUn-UIIH(Q) ? B2 inf ju-VnIIHI(Q). X vla E V 

On the other hand, 

(4.3) inf || u- Vn 1| HI(0) U {|- TIn (U) Hl(Q), 

since Hn(U) is well defined because of the continuity of u and it belongs to Vn 
because of Lemma 3.2. By combining (4.2) and (4.3) it will follow that Un -7 u in 
H, (Q) once we have proved that U - IlnH(U)IIH1(o) -? 0 as n -? oo 

Now 

IIu-Hn (U) || HI(Q) ? C{ | U - Hn(U) 1 LI(Q) + IVx (U - ln(U)) II LI(Q)} 

(4.4) - cES {|U - Hn(u)IIL2(K) + |IVA(U - ln (U))IIL2(K)} 
K E 7 
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We have: 

Lemma 4.2. There exists a geometric constant B3 > 0 such that, if we put XI 
01, X2 = A02, then, if K EE En 

||U Hln(U)1IL2(K) + ||V,(u - ln(U))1IL2(K) 

(4.5) ? B3{ IX1UIIL2(K) ? IX2UIL2(K) + I|X2X1UllL2(K) }n-1/(1?+). 

Note that Int(K) intersects neither r nor the degeneration line x = 0, so that 
u E Cl2c (IntK), by classical Schauder estimates. 

Proof. First, let us estimate 

(4.6) j V(-IIn (U)) 12dxdy = JUV(2S (Q,)O,O) 12dxdy = I2 , 

where Q, Q2, Q3 are the vertices of K. 
Suppose for instance that K has vertices (6j, k), (6j+1, k), (6j, ), and put 

(4 7) {x j= Q + (6j+i - )X 1 

The above change of variables maps K onto the base triangle of vertices (0,0), (1,0), 
(0,1), and its Jacobian determinant is 21K1, so that, if we denote by vD any function 
v written in the new variables x', y', we get 

(4.8) ' v-InH(v)12dxdy 21K1 / v- - (Q,) z, 2dx'dy' 
I KVi=Z 

Note now that 1 
Oxhi) (6j?- 6j)O9v, ay i9 = -0ayV. 

Then 
3 __ 

K ax (u - Zu(Qi)(pi) 12dxdy = 21KI I0x (...)12dx'dy' 

i= 
1~~~~2K 

= (6+I 36)2 I ax (...)12dx'dy' 

(4.9) = /( 6) K la ( ... )12dx'dyl. 

Analogously 
3 

1 A(x)0Oy(u - u(Qi)i) 12dxdy 

-6 a IkJ A2(6j + (6j+1 -6j)XI)Iay, 

< n(6j+l - 3j) (max A)2 J lay( ... )12dx'dy' 

< c12(j+-) A(t)dt 1 )12dxdy 

= ( - cI a (...)12dx'dyl, by (3.1), 
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so that 

1~~~~ 
(4.10) I2 C< c U i) Ci-t12 

n(+l 
- j) 

Hl 

where Ql, Q2, Q3 are vertices of K, and I Hk (K) denotes the seminorm given by the 
sum of the L2-norms of the highest derivatives. We can now apply the following 
classical estimate: 

3 

(4.11) |u-Eu(Qi)WilH l0, 1 <c f2 

i=l1 

(see, for instance [QV], Theorem 3.4.1), and we get 

'2 ? C 1O2iI2 +i 
2 

n(6j+l - 6j) {fIx'U L2 (K) ? HIUIL2 (K) + Iy'&X'UI L2(K)} 

n IIL2(K) n5(j+l j) I1 VIIL2 (K) 

(4.12) ( j+l ) 

=- 3)2II&u I L2 (K) + 4 II UII L2(K) + 2 ||II xU||L2 (K)} 

= {J1 + J2 + J3}. 

First of all, we note that J1 can be written as follows: 

j, = (6j+1 -_ j)2IIX2UII2(K); 

the next step will consist of proving that 

(4.13) J2 < c(j+l - 6j)2l1X2UI12 2(K) and J3 < c(Qj+l - 6j)2 X2X1UI2(K). 

To this end, we observe that, if x E K, then, by the monotonicity of A, 

1 f6i 1 
A(x) > A(6j) > (i 

'i61 A(t)dt = n(6j - 6j-,)' 

so that (4.13) will follow by proving that 

(4. 14) dj - 63-1 < c(Qj+i - 63) 

for allj= 0, 1,. .., n-1. 
On the other hand, it is easy to see that 

d((6j_, k/n), (6j, k/n)) < 6j - j 
so that, by Proposition 2.2 (iv), we have 

F((6j, k/n),6j - 6j-) < cF((6j-l, k/n), 6j- j-,) 
6i ~ c aj + 1 

= c A(t)dt = C = Cf A(t)dt 

= cF((6j, k/n), j+l - 3j) < F((6j, k/n), c'(6?+l - 6)), 

by Proposition 2.2 (iii), and hence (4.14) follows by the monotonicity of the function 
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Thus 

'2 ? c(63+i - 6j)2{flX2u1I2 + flX2U|122(K) + JJX2X1uIIU2(K)} 

<n2/(1+-y){IIX2UII2 + IIX2UII22(K) + IIX2X1uIIU2(K)}, 

by Theorem 3.1 (iv) and (v). Finally, the term 

I1 = Iu _ lH(u)j12dxdy 

can be handled in the same way. 
Combining (4.4) and (4.5), we complete the proof of Theorem 4.1. O 

Theorem 4.3. Let A be as in Theorem 4.1, and let the following interior a priori 
estimate hold: if v c Hx1,c(lR2) is such that Lov = g C L2(Q), then for any 

5ECoo(R 2) 

E IXXiXC(V)I||IL2(Q) < C1191g L2(Q) 
i,j=1,2 

Then the following error estimate for the Galerkin approximations of the solution 

u E H (Q) of Lou = f E Loc(Q) holds: 

IIU-UnflHHI() < Bn 1/(1+a) lL2(Q) 

where B is a geometric constant. 

Proof. By Theorem 4.1 and the subsequent remark, we have only to prove that 
XiXju E L2(Q) for i,j = 1,2. Consider the following covering {F3} for Q: 
F1 =] - oc, -1/4[xIR, F2 =]1/4, +oo[xR, F3 =] - 1/3, 1/3[x] - 3/4, 3/4[, F4 = e2 

+]- 1/3,1/3[x] - 1/3, 1/3[, F5 = -e2+] - 1/3, 1/3[x] - 1/3, 1/3[, where e2 = (0,1). 

Let moreover {Vkj, j = 1, 2,3,4, 5} be a partition of unity subordinate to the cover- 
ing {F3}, with 0j E C (IR2) 0 < Pj < 1, supp 0j C Fj. We have 

E ||XiXjU||L2 (Q) < E XiXj (OkU) || L2 (Fk)- 

i,j k ij 

Consider now k = 1, 2: these cases can be easily reduced to usual elliptic estimates. 
Indeed, in F1 and F2 the HA norm is equivalent to the usual Sobolev norm, for 
A is bounded away from zero on these regions. On the other hand, for the same 
reason, the operator Lo is elliptic on F1 and F2, and then it satisfies standard H2 
a priori estimates by a well known regularity result on planar angular regions due 
to P. Grisvard ([G]). Thus, if we take into account that 

IO (OkU) = 'Ik f - 2(VA,4k, VAU) - ULO'Ok = gk, 

and that | gk1|L2(Q) < C|f|L2(Q), we get for k = 1, 2 

E ||XiXj (ku)||L2(Fk) < Cjl?kUI1H2(Q) < C|IIO(Q?kU))L2(Q) + kl0kUjjL2(Q) 

i,j 

< C|| f || L2 (Q) . 

Thus we can restrict ourselves to considering, for instance, the region F4. We set 
F4 = Q, Q_ = e2+]-1/3,1/3[x]-1/3, 0[ and Q+ = e2+]-1/3,1/3[x]0, 1/3[. We 
can assume that f4 = , satisfies =$ 1 on B(e2, 1/4). 
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0 

As above, u) E H.'(Q) and Lo(uw) = g E L2(Q), with 119Y1L2(Q2) ? cflfHL2(Q). 
We now define 

G(, y) = g{ in Q-, 
10 in Q+, 

0 

and we denote by v1 c H (Q) the solutioni of the problem 

(PI) f ?OVI = G1 in Q, 
= 0 { on aQ. 

0 

Let G2 (x, y) = G1 (x, 2 - y) and let v2 E H'(Q) be the solution of the problem 

(P2) 
{ V2= G2 in Q, 

v2 = 0 on AQ. 
We have: 

(1) V,2 E Co,"(Q); 

(2) v2(x, y) = v1(x, 2-y). 
The first property holds as above, arguling as in [FS], whereas the second property 
follows from the uniqueness of the solution of (P2), if we prove that v1 (x, 2 - y) 
solves (P2). To this end, let ,o CC(Q); then 

JR [(V1)(x, 2 - Y)>x(X, y) - A2(X)(V1)2y(x, 2 - y)Vpy (x, y)] dxdy 

= Jf( [(vI1) (x 71x).. (X, 2 - 77) - A2 (X)(VI)rj(X, 77)(P2-,1(X, 2 - i7)] dxdr 

= ,1f [(vI)X(X, 77)Px(X, rq) + A2(x)(vi)X(x, i7)4'71(x, 77)] dxd71 

(where 4'(x, 71) = V(x, 2 -7))) 

= J G1 (x, 77)i(x, 77)dxd'r = j C1 (x, 7) j> (x, 2 - 'r)dxd77 

= J G1 (x, 2 - y)V(x, y)dxdy 

= J G2(x, y) V (x, y)dxdy. 

Now we put v = (v1 - v2) | 
,_, 

so that v(x, y) = (vl (x, y) - v1 (x, 2- y)) 1 _, v C 

Co a (Q) and v 0 o n 0Q. -Moreover, v c H, 1(Q-). We assume we have proved 

that v C H (Q-), and we verify that Cov = g in Q_. Let V C C)?O(Q-); then 

J (V1V. + A2VyVy)dxdy 

= J [(V'i)xix + A 2(V1 )y9y] dxdy - J [(V2)xpox + A2 (V2)ypy] dxdy 

= J (C1 - G2)pdxdy = J gcdxdy, 

since G1 g in Q_ and G2- 0 in Q_. Hence by uniqueness v = uo. 
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We prove now that if v E H>(Q-) n C0',(Q_) and v 0 on DQ-, then 
0 

v E Hj(Q-). To this end we consider the covering for Q- given by E1 = Q n 
(]-00, -1/4[xR), E2 = Q_ n (]1/4, +oo[xIR), E3 = Q_ n (Rx]l - 26, +oo[), E4= 
Q_ n (Rx]l - 6,-oo[), and let {(Cj,i = 1,2,3,4,} be a partition of unity sub- 

ordinate to this covering. It will be enough to prove that vSoi E HI (Q-) for 
i = 1,2,3,4. This is clear for vpl and vp2, since vSl,vS2 c H'(Q-) and so 

0 0 

v H1 (Q-) C H> (Q-) by the usual results on Sobolev spaces. We now prove that 
0 0 

V(p3 = v E Hl(Q-); V(p4 can be treated analogously. To prove that v E H> (Q-) 
we will prove that v can be approximated by functions n cz H\ (Q-) such that 
supp vn C Q_. Indeed, since the usual convolutions with Friedrich's mollifiers do 
converge in Hj\(Q-) ([FSSC], [GN]), each vn can be approximated in H> (Q-) by 
functions in CO (Q-), and hence the statement follows. 

Let 0,l : [0, +oo) -) [0: +00) be a smooth function such that 0)- 1 on 

[0,1 - 1/n], 0,)-= 0 on [1- 1/2n, +oo), 0? < 1? loL'I < 3n: we set Vn, = ll)n 

It follows that supp Vn C Q_ and jj|Vn - VfIL2(Q_) = |b(on- 1)JIL2(Q_). Now 
b(on - 1) -* 0 a.e. and I(n - 1)I <_ Ib, and hence the norm tends to zero. 
Therefore bn - v in L2(Q-). Analogously 09ibn --+ ovi in L2(Q-). Assume we 
have proved that IIA0ynlIlL2(Q_) < C. It follows from the reflexivity of H>\(Q_) 
that (Mn)EiN converges weakly in H,(Q-), and then ivn -* v weakly in H,(Q) 
since v E Hi (Q) and b ) in L2(Q_). Hence, by Mazur's theorem, v is the 
limit in H ,(Q) of a sequence of finite convex combinations of {Vk, k E N} which 
are still functions supported in Q-, and we are done. 

Let us prove now that IlAay'bnlL2(Q_) is bounded. We notice that 

Ez- L2(Qf n {lxl > e}) 

for every E > 0, and hence the function y -* ,9,y(x, y) is in Ll for almost every x. 
Therefore, using the property v(x, 1) 0_ , we have 

(x,Y) l < JI l I' (x, t) Idt < (1- ,y(j1 jV 12dt) / 

for (x,y) Q_. We then have 

IIAD0yDn|L2(Q_) <?I AOn/(IyV)IL2(Q_) + IIAV(D(0y/n)flL2(Q_). 

The first term tends to IIA0YbIIL2(Q_) as n -0oo, as above. Concerning the second 
one, we have 

1/3 1 

jAV(y0Yn) 112L2(Q_) <gn2J dx\2 (X)j dyvb (x, y) 

<9ri2] dxA2(x)] 1 dy(l-y) i3y 

= 9n2J dxdtA2 (x,t) J dy(1 - y) 

-n dxt1\ ( yI-y 

ad te s n is p L2 (Q_r)oe 

and the statement is proved. 
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Now results on interior regularity for problems (P1) and (P2) guarantee that 
X1vi, XlX2v, X2XV v 2, X Ev, E L2(B(e2, 1/4)), and hence it follows that Xju, 
XlX2u, X2X1u, X2u E L2 (Q). C 

Corollary 4.4. Let A be such that A = [I,, where [-t is a smooth function such that 

,l(O) = [l (O) = * - *,m-l)(0) = 0 

and pJz(m)(0) #& 0 for some m > 1. Then the conclusion of Theorem 4.3 holds. 

Proof. The two vector fields Yi = Di, Y2= [ltD2 satisfy H6rmander's rank condition 
since the rank of the Lie algebra generated by Y1 and Y2 equals 2 at each point of 
R2. Thus the interior a priori estimate of Theorem 4.3 follows from Theorem 16 
(d) in [RS]. Thus we have only to show that Hypothesis (H) is satisfied, since the 
remaining assumptions of Theorem 4.1 follow straightforwardly. On the other hand, 
Hypothesis (H) follows by Proposition 5 in [FW], where it is shown in particular 
that, because of the H6rmander condition, the function [lt belongs to RH, i.e. its 
average on any interval is equivalent to its L1 norm on the same interval, and so 
we are done. C 

5. ALGORITHM AND NUMERICAL RESULTS 

In this section we will describe some numerical tests of our previous results; as 
we pointed out in the Introduction, the number iy + 2 plays the role of a dimension, 
which can be very large if the operator is strongly degenerate. Because of this, to 
test the trend of our estimates we have to work with a mesh containing a large 
number of points, and, for this reason, we have to choose our implementation 
rather carefully. The algorithm we used to perform our numerical integrations is 
MGGHAT, a unified multilevel adaptive refinement method, in which a unified 
approach to the combined processes of adaptive refinement and multigrid solution 
has been very conveniently implemented. A detailed technical description of the 
method can be found in [Ml], [M2]. 

In our case the refinement cannot be obviously performed by bisecting pairs of 
triangles, since we want to reproduce the geometry associated with the differential 
operator considered. The hierarchical basis scheme can nevertheless be applied, 
since also for the geometries considered in this paper it is possible to implement 
divisions (which reproduce the geometry required) of a pair of triangles, correspond- 
ing to the addition of a new basis function having support for the pair of triangles 
divided, and leaving the existing basis functions unchanged; in fact we modified the 
part of the program producing the mesh generation, according to our geometry. 

Indeed, from (3.2) it can be seen that at each level of refinement all the old 
nodes are maintained, and some new ones are added. This is exactly the principle 
on which the hierarchical basis approach is based. The hierarchical basis coincides 
with the usual nodal basis at the first level of refinement. As refinement proceeds, 
with each division one or more new nodes are added, and for each node a new 
basis function is defined so that it has the value 1 at the new node and 0 at all 
other nodes, but the existing basis functions remain unchanged. The choice of 
hierarchical basis leads to a representation of HII(u) which differs from (3.8), and 
then to a different stiffness matrix: the algorithmical gain is described in [BDY] 
and [M2]. 
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As an example, we choose 

A = V3mlxxj-1 forf3 > O and m > 1, 

so that it is easy to check that (2.2) holds with -y = m - 1. Put 

R =/31x12m + y2 and u = Rl/m, 

and, finally, 

I = (1- x2)(1 - y2)u. 

0~~~~~~~~~~~~~~ A direct calculatioIi slhows that v7 C Hl (Q), and that f = C(-v E L'(Q); on the 

other hand, if m > 2.5, then v does not belong to the usual Sobolev space H' (Q). 
This fact is not surprising, since the function u is equivalent to the square of the 
distance d of the point (x, y) from the origin (see [FL]), so that it reflects in a rather 
subtle way the properties of the model operator Co and it is strictly connected with 

0 

the Sobolev space H\(Q). 
We can now evaluate the discretization error in the energy norm 

Iax(V - 1T)71!L2(Q2) + IIO(v - V7)AIL2(v2), 

which not only is the norm naturally associated with the operator, but it also is the 
only 'reasonable' norm, since in general the H'-norm of v is infinite. By Theorem 

0 

2.4, the energy norm is equivalent to the norm in H (Q). 
In the following pictures we plotted these errors in a log-log scale as a function 

of N, the number of the nodes of our triangulation, which we recall is proportional 
to n2 (we call the triangulation corresponding to the geometry naturally associated 
to the operator the natural triangulation, see Figure 3), and we compared it with 
the errors we obtain (for the same number of nodes) by using an adaptive version of 
our triangulation, a uniform triangullation and an adaptive uniform triangulation. 
The graphs in Figure 1 correspond to , = 128 and m = 4 (-y = 3) and m = 6 
('y = 5), respectively. The choice of a large : has been suggested by the need of 
amplifying the behaviors we are interested in studying. 

Finally, we evaluated the trend of the error estimate, reported in Table 1, by 
comparing it with the theoretical estimate (always in the same logarithmic scale) 
in the cases m = 2 (-y = 1) and m = 3 (-y = 2). The expected trend for the 
errors is of the form Nb, where by our error estimate b = -0.25 for -y = 1 and 
b = -0.16 for y = 2. The results obtained from the linear fitting of the.data, i.e. 
b = -0.242 ? 0.008 for -y = I and b = -0.17 ? 0.01 for -y = 2, shown in Figure 2, 
are a clear indication of the optimality of the error estimate. 
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FIGURE 1. Plot of the discretization error in energy norm, as a 
function of the number of nodes N, obtained with four different 
triangulation types: natural (i.e. obtained using the geometry nat- 
urally associated to the operator), uniform (i.e. obtained using 
Euclidean geometry), adaptive uniform (i.e. obtained by an adap- 
tive refinement method in the Euclidean geometry) and adaptive 
natural (i.e. obtained by an adaptive refinement method in the 
geometry naturally associated to the operator); for zy = 3 (m = 4) 
(Figure la, top) and ^y = 5 (m = 6) (Figure lb, bottom). 
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y =1 

y = a*NAb 
a=0.68+/-0.04 

b=-0.242+/-0.008 

0.1~~~0 

0.01 

100 1000 10 nodes 105 

y =2 

y = a*NAb 
a=0.48+/-0.06 
b=-0. 17+/-0.01 

0.1~ ~ ~ ~~~- 

0.0 

0.01 I . ~ .' ,I,,,,,,, 

100 1000 10 nodes 105 

FIGURE 2. Fitting of the discretization error in H, norm for 
-y = 1 (m = 2) (Figure 2a, top) and -y = 2 (m = 3) (Figure 
2b, bottom). The smaller nodes have been discarded to consider 
only the asymptotic regime. The line superimposed on the data is 
the result of numerical fit. The data have been fitted with the lin- 
ear function f (N) = a x Nb, where N is the number of nodes used 
in the triangulation. We obtained the values b = -0.242 ? 0.008 
for -y = 1, corresponding to the theoretical prediction b = -0.25, 
and b =-0.17 ? 0.01 for -y = 2, corresponding to the theoretical 
prediction b = -0.16. The set of data used are also reported in 
Table 1. 
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TABLE 1 

N a=1 ay=2 
545 0.1483 
1089 0.1279 
2113 0.1039 0.1265 
4225 0.0895 0.1080 
8321 0.0763 0.0978 
16641 0.0674 0.0877 

gamma 1, grid natural, nuxtri 128 

FIGURE 3. Example of a triangulation with 128 triangles obtained 
with the geometry naturally associate to the operator, with y = 

1 (m = 2). 
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